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Abstract -
With the growth in automated data collection of construc-

tion projects, the need for semantic navigation of mobile
robots is increasing. In this paper, we propose an infrastruc-
ture to leverage building-related information for smarter,
safer and more precise robot navigation during construction
phase. Our use of Building Information Models (BIM) in
robot navigation is twofold: (1) the intuitive semantic infor-
mation enables non-experts to deploy robots and (2) the se-
mantic data exposed to the navigation system allows optimal
path planing (not necessarily the shortest one). Our Building
Information Robotic System (BIRS) uses Industry Founda-
tion Classes (IFC) as the interoperable data format between
BIM and the Robotic Operating System (ROS). BIRS gener-
ates topological and metric maps from BIM for ROS usage.
An optimal path planer, integrating critical components for
construction assessment is proposed using a cascade strategy
(global versus local). The results are validated through series
of experiments in construction sites.

Keywords -
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1 Introduction
Conventional methods of data collection for the pur-

pose of progress monitoring rely on periodic observations,
manual data collection (which is mostly textual data and a
limited number of photos), and personal interpretation of
the project progress [1]. These aforementioned conven-
tions are error-prone, time-consuming and cost-ineffective
since they are subjective processes [2]. Manual data ac-
quisition by individuals would result in decentralized data;
coming from different sources in different formats, thereby
making it somewhat challenging to manage and analyze
them. Automation of monotonous and repetitive construc-
tion processes would significantly enhance construction
efficiency [3]. Hence, there is a growing need in the con-
struction industry to automate data collection task. In
addition, the applications of data collection using an Un-
manned Ground Vehicle (UGV) can provide new kinds of

information and applications such as equipment tracking
and 3D reconstruction which would ultimately have pos-
itive impacts on quality control, safety and sustainability
of the construction projects.

With tremendous progress inmobile robots capabilities,
the interest in adopting mobile robots for data collection
on construction sites is increasing. Rugged platforms with
high manoeuvrability are commercialized for this usage
[4] and several works are enhancing their autonomy for
navigating these challenging environments [5]. A hand-
ful of fundamental steps still need to be addressed for the
deployment of robots on construction sites, such as their
usage by non-experts (untrained) operators and the auto-
matic integration of the diverse requirements related to
construction management in their mission planing. Our
solution leverages BIM semantics extracted in an interop-
erable data schema, IFC, and translated for robot indoor
navigation. This semantic information, intertwined with
the robot navigation and mission, help the operator man-
age the robotic system as they share conceptual knowledge
of their environment.

This paper proposes a novel method for semantic robot
navigation with an optimal path planning algorithm using
building knowledge on construction sites. The optimal
path is extracted from user inputs using BIM/IFC which
provide digital representation of the construction project
[6]. The resulting path (which is not necessarily the short-
est path) can be altered with the weights of several criteria
such as robot and workers safety, BIM new information
requirement and sensors sensitivity to environmental fea-
tures. In this step, the building semantics play an essential
role on defining the start, the end and the transitional co-
ordinates with which the robotic system plans the path.
Furthermore, all along the mission, the local paths are
computed based on the relevant complementary informa-
tion for the low-level navigation extracted from IFC. This
is essential to cope with limitations of the robot. For in-
stance, a path planer should avoid trajectory near glass
walls: they are hard to detect by many sensors. Luckily,
information about wall materials can be retrieved from
BIM. Among the conventional methods on path planning
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[7], we use topological map representation in order to store
the building semantics in nodes and graphs. The current
paper contributions are as follows:

• An optimal high-level path planner integrated with
the low-level navigation (cascade navigation stack);

• Semantic teleoperation and navigation for au-
tonomous UGV during the construction process;

• Practical implementation of the proposed system de-
ployed on an autonomous mobile robot navigating a
construction site.

2 Related Work
Conventional methods of indoor path planning often

refer to optimal path as the shortest path calculated by var-
ious algorithms such as A* and Dĳkstra’s [8]. To enhance
the performance of these planers, many studies suggested
ways to leverage BIM/IFC for indoor path planning. Wang
et al. [9] develop a framework for converting the BIM dig-
ital environment to a cell-based infrastructure to support
indoor path planning. In this work, they emphasize on the
"BIM voxelization" process rather than the path planning
problem. In another study, a BIM-based path planning
strategy is used for equipment travel on construction sites
[10]. The authors extract the start and end points from
BIM and then generate the shortest sequence of rooms
for the operator, but does not support robot path plan-
ning. Ibrahim et al. [11] propose a path planning strategy
based on BIM for an Unmanned Aerial Vehicle (UAV) on
construction sites which uses a camera for data capturing.
They use BIM geometries to define a path for outdoor
environments but do not address indoor semantic robot
path planning. In this direction, Follini et al. [12] utilize
BIM geometries for path planning of an UGV supporting
construction logistics application. Their proposed system
uses a human-assisted approach in a controlled environ-
ment and is yet to thoroughly leverage BIM/IFC semantics
in a construction site. In [13], the optimal route for a data
collection mission using an UAV is proposed. They utilize
4D BIM to identify which building spaces are expected to
change during the construction phase (implemented in a
simulated environment) so that the flight path navigate
through those areas and collect data.
Delbrügger et al. [14] developed a framework sup-

porting humans and autonomous robots navigation which
mostly uses building geometries in a simulated environ-
ment. In [15], the indoor localization of an UAV is as-
sessed using AprilTags with their known location in a
BIM-generated map. They present this work as a proof-
of-concept for the use of AprilTags in indoor environ-
ment. However, due to inaccuracy of localization in their
work, they improve their previous work by using Extended

Kalman Filter (EKF) in their localization framework [16].
Another study examined the use of BIM in robot local-
ization in which the proposed system uses a hierarchical
reasoning for path planning [17]. BIM was also demon-
strated to be powerful for the identification of different
paths from which a hierarchical refinement process can
find the shortest path [18]. That work provides only high-
level path (rooms sequence) with respect to BIM geome-
tries and the integration with ROS is not studied. An
approach using hypergraphs generated from IFC files was
also developed in which a modified A* algorithm is able
to detect the optimal path among nodes in the graph [8].
In these inspiring works three aspects of the BIM poten-

tial for indoor robot path planning are yet to be thoroughly
studied: (1) considering the full potential of the BIM/IFC
semantic rather than only the geometry (2) integrating the
high-level (rooms sequence) with the low-level sensor-
based information in a full navigation stack (3) the field
validation of strategy using BIM/IFC for both global and
local path planning. In this paper, we cover these gaps by
integrating Building Information Robotic System (BIRS)
into a navigation system in ROS in order to determine the
optimal path and then navigate autonomously.

3 Topological building maps created from
BIM/IFC

IFC data schema provides construction stakeholders
with semantic information of buildings containing at-
tributes and relationships between different entities [19].
This information can be extracted in graph database [20].
However, the use of that information for reasoning is com-
plex since the IFC files encompass large amounts of data.
In order to copewith this, we first identify the required data
for robot navigation on construction sites, then, we extract
and store the data in an XML database. The conceptual
semantic relation between BIM/IFC and robot navigation
is covered in a previous paper on BIRS [21]. We extend
the hypergraphs of Palacz et al. [8] with the semantic and
geometric information of IFC files. All the semantic infor-
mation required to the global and local planers retrieved
from IFC is in the form of a topological map.
As IEEE 1873-2015 [22] defines, nodes and edges are

the components of topological maps and we fill them with
the following information:

• Nodes contain the rooms information namely: room’s
name, room’s unique ID, room center, room area,
walls’ unique IDs, wall material, last scan date, con-
struction activity (hazard for the robot)

• Edges contain the doors information namely: door’s
unique ID, door’s location, doors opening direction

In the hypergraph, one node is created per IfcSpace and
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Figure 1. A directed hypergraph of ( = (+, �)
where + = {+1, +2, ..., +=} is a set of nodes and
� = {�1, �2, .., �<} is a set of hyperedges. Each
node (+8) is an IfcSpace containing its relationships
and each hyperedge (� 9 ) is an IfcDoor with its at-
tributes extracted by BIRS [21].

for each IfcSpace, the bounding IfcWall and IfcCurtain-
Wall elements are identified. With the above-mentioned
information, a graph is generated as illustrated in fig. 1.
Then, the edges need to be attributed with the cost (weight)
of passing over each (from a room to another). In this di-
rection, , = (,+ ,,� ) is a pair of weights where ,+
and,� are the node and hyperedge weights respectively.
,+8 is the 8 node total weight obtained from:

,+ = F< + F0 + FB + Fℎ (1)

where F< depends on the walls material, F0, on the room
area, FB , on the room scan-age, and Fℎ , on the room
hazards. ,� 9

is the 9 hyperedge weight obtained from:

,� = F3 (2)

where F3 depends on the door opening direction. For
passing from one node to the other, there might be several
paths the robot can use. The overall weight of a path (from
start to end node) is as follows:

, =

=∑
8=1
,+8 +

<∑
9=1
,� 9

(3)

One challenge for the robot is to be able to detect obstacles.
To help the robot predict and avoid potential failures, the
material properties of the walls are extracted through Ifc-
Material and its super-type IfcProduct. Theweight of each
curtain wall, i.e. walls that are invisible by design, in each
node is F< = 12, while all others are F< = 4 since they
can be easily detected. The time required to go through
a transition node is also taken into account, i.e. bigger
rooms take more time for the robot to cross. Accordingly,
the weight for the rooms less than 50<2, between 50<2
to 100<2 and more than 100<2 are F0 = 2, F0 = 8 and
F0 = 12 respectively. Since one of the core purpose of de-
ploying robots on construction sites is to collect data, the
scanning age of all rooms is incorporated. The progress
monitoring needs up-to-date data and when the robot is
collecting data it can optimise its path to visit more rooms

and collect more data. The scanning periods are selected
according to industry needs, therefore, we assign FB = 10,
FB = 6, FB = 0 for the scanning period of less than 1
week, between 1week and 2weeks, andmore than 2weeks
respectively. Since the construction projects evolve con-
stantly, the safety aspects of robot navigation are essential.
In this direction, the data collection for the spaces with
ongoing construction activities should be postponed to a
safer moment for the robot to navigate those rooms. If the
hazardous space is one of the transition nodes, an alterna-
tive route needs to be automatically planned so we assign
Fℎ = 500 for the weight of passing through such spaces.
In this case, another path will be selected by the algorithm
if there is any. If there is not an alternative safe path for the
robot, the algorithms provides a warning for high-weight
paths so that the supervisor of the robotic deployment is
warned. The hypergraph representing building topologi-
cal map enables the robotic system to find the optimal path
by running an algorithm. In this paper, we use directed hy-
pergraph (with directed hyperedges) allowing us to assign
cost for door opening directions. IfcDoor as a sub-class
of IfcBuildingElement provides the center coordinates of
the doors creating hyperedges (with their coordinates) in
the hypergraph. IfcDoor also stores the opening direction
through y-axis of ObjectPlacement parameter. For push-
ing and pulling the door, we assign F3 = 2 and F3 = 6
to the hyperedge’s weight respectively. This is due to
difficulty for pushing and pulling the doors respectively.
Ultimately, the total weight of passing one to the other is
the sum of nodes weights and edges.

4 Finding The Optimal Indoor Path
As Gallo et al. [23] define, directed hypergraphs are

divided into two categories according to their hyperedges
namely: forward hypergraph (F-hypergraph) and back-
ward hypergraph (B-hypergraph). The former is a directed
hypergraph in which one node diverges to several nodes
and the latter is the one in which several nodes converge to
one node. As an example of applications, F-hypergraphs
are employed for time analysis on transportation networks
[24]. Also, B-hypergraphs are used to perform deductive
analysis to find the optimal path in a hypergraph. The
combination of B-hypergraph and F-hypergraph is a BF-
hypergraph having both divergent and convergent nodes
[23]. In topological building layouts, we deal with BF-
hypergraphs since we have spaces which connect several
spaces to other spaces (an example of such nodes is cor-
ridors). In addition, we intend to find the optimal path (a
"deductive database analysis" from several possible paths)
based on several criteria which are represented as weights
in the hypergraph, therefore, we use the "Shortest Sum B-
Tree" algorithm which finds a hypertree (subhypergraph)
of the nodes as explained in [23]. We also use additive
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Inputs:

layout_graph : hypergraph

tail_room, head_room : node

door : hyperedge

path_weight : hyperedge_total_weight
Outputs:

semantic_path : list<node, hyperedge>

x_y_path : list<nodes_coordinates,
hyperedges_coordinates>

hyperedge_total_weight : number

Figure 2. Data structure for IFC-based semantic op-
timal path planner algorithm

weighting function to calculate the cumulative weight of
each possible route and then we choose the lighter route
which is the optimal path for the robot.

In order to create the hypergraph, we first retrieve all
the relevant IFC information. The process is done with
a Dynamo script (a visual programming tool) to extract
the IFC parameters in order to export the IFC informa-
tion in a XML database. A Python script is developed
to parse the XML data in order to translate meaningful
data to ROS (for example, the rooms center coordinates
are retrieved as strings so they need to be parsed to be
integrated with the robotic system). With an hypergraph
of the whole building, the user defines the start and end
nodes (rooms), and let the algorithm find the optimal path.
Since we are implementing BF-hypergraph, each pair of
nodes is connected with two directed hyperedges together,
thereby making a comprehensive B-hypergraph within the
BF-hypergraph. This practice allows considering forward
and backward direction in a path so that the door opening
direction is considered. "Shortest Sum B-Tree" algorithm
provides the possible hyperedges from a start node to other
nodes [23]. Then, the retrieved information is used to cre-
ate a sub-hypergraph from the start node to all other nodes
representing all the possible paths. By giving the destina-
tion node to the sub-hypergraph, the possible paths from
start to end node are identified and finally the lowest cu-
mulative weight of the paths is retrieved. Having a set
of nodes and hyperedges from the optimal path, the build-
ing information is extracted to enable semantic navigation.
Each node is represented by the name of the correspond-
ing space and the center coordinates of that room. As
illustrated in fig. 2, the optimal path outputs a set room
names, their coordinates and a set of door coordinates in
the sequence of node location and hyperedge (door) loca-
tion. The room names enable semantic navigation and the
2-D coordinates provides destinations one after the other.

5 Semantic Graphical User Interface
A Graphical User Interface (GUI) was developed based

on BIM semantics to allow users to intuitively operate the
robot and configure the path planner. The GUI connects
to the ROS running in the robot and presents semantic
information of the building and data from the robot in real
time. The integrated high-level and low-level navigation
systemmoves the robot to the destination. The GUI allows
the non-expert users to workwith their domain knowledge,
thereby making robot deployment more intuitive and sim-
pler. Figure 3 illustrates the interface window. The GUI
is developed in Python notebooks, allowing for easy inte-
gration of visualization widgets and customization.
The GUI provides the building’s rooms in a drop-down

list, from which the user selects a destination and then
launch the path planner to find the optimal path. The
center area of the GUI shows a map of the building, with
the robot’s pose being updated in real time, along with the
paths objectives. The left panel shows the selected room’s
(end node) attributes. The right panel allows the user to
alter the weights of each parameters of the path planner.
After changing and saving the new weights, the user can
generate the path again and see the results on the map.
Finally, the user can click on the Move Robot button to
trigger the robot to start moving.

6 Field deployment
Our approach was validated from simulation to the field

with an experimental case study. The goal was to drive a
mobile robot through the corridors of one of the buildings
at the École de technologie supérieure, for which an as-
plannedBIMwas available, and collect data. The semantic
path planner was used to generate a set of waypoints from
the user inputs, then a low level A* path planner aided by
a collision detection stack navigates the robot.
Our robotic platform, shown in fig. 4, is built from

a four-wheeled UGV (Clearpath Jackal) equipped with
wheel encoders, an internal IMU and an onboard NVidia
Xavier computer. The Jackal is delivered with ROS nodes
for control, odometry estimation (from encoders and IMU)
as well as diagnostics tools provided by ROS.
The sensing system, which was envisioned for point

cloud collection in construction sites, contains two Li-
DARs, five depth cameras and one tracking camera. The
sensors are positioned in different directions to cover as
much as possible of the robot’s surroundings. While all
sensors collect and record data of the environment, most
of them are also used by the navigation stack for localiza-
tion and collision avoidance. Below we present a detailed
description of each sensor or group of sensors:

• Front facing cameras: One Intel Realsense D435i
depth camera and one Intel Realsense T265 tracking
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Figure 3. Semantic GUI for the intuitive operation of the robot navigation on construction sites. The controls in
the header allow selecting a destination and generating the path. The panel to the left shows the attributes of the
selected room. The center contains a map of the environment, with the robot’s pose in real time represented by
the purple arrow. The center points of the rooms and doors in the path are represented in the map by the yellow
circles. The right panel allows the user to reconfigure the different weights applied to the path generation.

Figure 4. Mobile robot platform equipped with var-
ious sensors

camera are mounted in front of the robot. The T265
software estimates the camera’s pose and integrates
data from the base odometry (wheel encoders and
IMU), providing accurate odometry that is fed to the
localization algorithm. The D435i provides depth
images that are used to detect obstacles immediately
in front of the robot, triggering an emergency stop;

• Velodyne Puck 32MR LiDAR: Mounted horizon-
tally on top of the robot, it captures laser scan data
from all around the robot. This information is used
by the localization algorithm to estimate the robot’s
global position on the building map;

• Depth cameras: Three Intel Realsense D435i depth
cameras are mounted pointing to the top and left and
right sides of the robot. Their purpose is to collect
RGB images and depth images from the walls around
the robot and from the ceiling;

• Ouster OS1 LiDAR: The last sensor, an Ouster OS1
LiDAR is mounted in the back of the robot, inclined

Figure 5. System Overview: A high level planner
that process BIM/IFC information and user inputs is
integrated to a low level navigation stack in a cas-
cade design. The low-level module takes care of
the localization, local path planning and collision
avoidance tasks, while the high-level planner gener-
ates paths based on BIM/IFC semantics.

by an angle of 45 degrees in order to capture point
clouds of the ceiling. Since this sensor has a large
90° field of view, it is also able to cover the walls and
part of the back of the robot.

Figure 5 gives an overview of the system. The robot
pose in the map is obtained through the use of a ROS
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Figure 6. View of the simulated environment used to
test the BIM/IFC optimal path planning approach.
The building 3D model was built with geometry in-
formation extracted from the BIM. The robot model
simulates the sensors and possesses the same char-
acteristics as the real robot.

implementation of the Adaptive Monte Carlo localization
algorithm[25][26]. Before deploying the robot, wall ge-
ometry is extracted from BIM to generate an occupancy
grid of the building. During the robot navigation, thismap,
the odometry, and the laser scan data from the horizontally
mounted Velodyne LiDAR are fed to the localization algo-
rithm, which then estimates the robot’s current pose in that
map. When a destination room is selected, the semantic
path planner outputs the preferred path to that room as a list
of waypoints, containing the center points of each room,
door and corridor in the path. AnA* path planner[27] then
calculates the shortest path from the robot’s current posi-
tion to the next waypoint in the list. Velocity commands
are generated from the A* path and sent to the robot’s
internal controller to drive it though that path.
The simulation was performed using the Gazebo Sim-

ulator. The building information is exported to create a
3D model, a digital twin. Clearpath, Gazebo and the ROS
community provide all the required software packages re-
quired to generate an accurate simulation of our robotic
platform. Figure 6 shows the simulated robot and its en-
vironment with different wall textures and transparency.

7 Results
The experiment had two main objectives:

1. Test the effectiveness of the semantic path planner
in generating the optimal path to reach the destina-
tion, given the building information obtained from
BIM/IFC.

2. Test how changes in the building information affect
the final path that is generated.

In our case study, the robot starts in a corridor (CORRI-
DOR OUEST) on the west side of the building and must
reach an open area (CORRIDIR EST) on the eastern part

of the building. Figure 7 shows the building map, and the
path in red line generated by applying the A* algorithm
from start to end. This is the shortest possible path between
the two points, taking into consideration only the building
geometry and a small safety collision radius around the
robot. When the Semantic Path Planner is applied to the
same scenario, a similar result is obtained as expected,
represented by the blue path in fig. 7. Since there are
no doors, undesirable materials or hazards in the path, the
algorithm outputs a list of rooms that must be visited by
the robot that represent the shortest distance from start
to end. The semantic path planner provided the order of
rooms’ names from the start to the end as it is show in the
GUI in fig. 3. Therefore, the user operating the robot can
intuitively track the path from the data collected. In this
direction, the as-built data can be directly compared to the
as-planned since the path is recorded semantically. Also,
the waypoints of rooms’ center coordinates and doors’
center coordinates are provided by the semantic path plan-
ner. If there is a doormade ofmaterials invisible to sensors
(such as glass), the complementary door coordinates helps
for safer, smarter, precise data collection. Following this,
the A* algorithm finds the shortest path between the way-
points.

In a second run, the building information was altered
to include a construction operation carried out in the area
highlighted with a dashed box in fig. 7 (not visible in the
GUI). Since the construction activity represents a hazard
with a high cost for the Semantic Path Planner, a differ-
ent path passing through another corridor is automatically
selected, as illustrated by the orange path. Nevertheless,
the high cost of the shortest path triggered a warning in
the system indicating a hazard to the user through the se-
mantic GUI. Therefore, the user can understand the risks
associated with navigation through an active construction
area and decide whether to scan the environment or post-
pone it to a safer time. The orange path was automatically
generated, although it is not the shortest path, as the opti-
mal path from the default parameters mentioned in section
4. This path passes along a large curtain wall invisible
to the robot’s sensors. The additional semantic informa-
tion provided by the BIRS is given to the robot as well
as the BIM occupancy grid so it contributes to collision
avoidance with the wall. The GUI provides the user with
the scan aging of the rooms so the user can decide which
rooms to select as the destination for data collection. This
allows the users to run multiple data collection mission
with the robot which increases the efficiency of robot de-
ployment on construction sites. As illustrated in fig. 7, the
integrated BIM-ROS information provides a cascade nav-
igation system on construction sites enabling autonomous
and accurate data collection of the spaces scanned.
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Figure 7. High-level and low-level paths: A* gen-
erates the shortest path possible between start and
end, not taking advantage of the BIM/IFC seman-
tics. Path 1 has the lowest total weight among other
alternatives. Path 2 is automatically generated when
there is a hazard to the robot in path 1.

8 Conclusion

This paper presented a semantic path planner that uses
building information from IFC data schema to generate op-
timal paths for safe and efficient navigation of autonomous
robots on job sites during the construction phase. We
used the BIRS for extracting building information from
IFC represented in a hypergraph structure. Path planning
algorithms can then be used to calculate optimal paths in
this graph given the building information. Weights are
designated to each connection in the path to represent how
different conditions can affect the robot’s navigation and
to prioritize paths with more desired characteristics. The
optimal semantic path is then integrated with low-level
navigation system and A* algorithm is used to calculate
the shortest path within the optimal path. The effective-
ness of the path planning to generate different paths given
different conditions was shown in a simulated and real life
case study.

This algorithm can be extended in the future to include
Mechanical, Electrical and Plumbing (MEP) semantics for
data collection. Different locations can be added based on
the kind of information needed at a specific time of con-
struction through the GUI in order to give to the robot
more destinations for data collection. In this case, the
high-level path planning algorithm would provide seman-
tic navigation, as well as a more efficient route for data
collection. A future study will be conducted to assess the
usability of the semantic navigation approach by study-
ing the user scenarios and they leverage the construction
progress monitoring workflows.
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